Logarithms are a key topic in the CAT Quantitative Ability (QA) section, consistently appearing in exams over the years. Typically, 1-2 straightforward questions on logarithms are included, making it essential for students to master the basics and practice thoroughly. Reviewing CAT past papers with detailed video solutions is highly recommended.
To practice important logarithm questions for the CAT exam, you can download a PDF of previous years' questions with video solutions—no sign-up required. Additionally, take 3 free CAT mock tests to assess your current level and identify your strengths and weaknesses.
If $$\sqrt{5x+9} + \sqrt{5x - 9} = 3(2 + \sqrt{2})$$, then $$\sqrt{10x+9}$$ is equal to
correct answer:-3
If Y is a negative number such that $$2^{Y^2({\log_{3}{5})}}=5^{\log_{2}{3}}$$, then Y equals to:
correct answer:-2
If $$\log_{a}{30}=A,\log_{a}({\frac{5}{3}})=-B$$ and $$\log_2{a}=\frac{1}{3}$$, then $$\log_3{a}$$ equals
correct answer:-1
If $$5 - \log_{10}\sqrt{1 + x} + 4 \log_{10} \sqrt{1 - x} = \log_{10} \frac{1}{\sqrt{1 - x^2}}$$, then 100x equals
correct answer:-99
Let x and y be positive real numbers such that
$$\log_{5}{(x + y)} + \log_{5}{(x - y)} = 3,$$ and $$\log_{2}{y} - \log_{2}{x} = 1 - \log_{2}{3}$$. Then $$xy$$ equals
correct answer:-1
For a real number a, if $$\frac{\log_{15}{a}+\log_{32}{a}}{(\log_{15}{a})(\log_{32}{a})}=4$$ then a must lie in the range
correct answer:-3
If $$(\sqrt{\frac{7}{5}})^{3x-y}=\frac{875}{2401}$$ and $$(\frac{4a}{b})^{6x-y}=(\frac{2a}{b})^{y-6x}$$, for all non-zero real values of a and b, then the value of $$x+y$$ is
correct answer:-14
If m and n are integers such that $$(\surd2)^{19} 3^4 4^2 9^m 8^n = 3^n 16^m (\sqrt[4]{64})$$ then m is
correct answer:-3
If $$\log_{2}[3+\log_{3} \left\{4+\log_{4}(x-1) \right\}]-2=0$$ then 4x equals
correct answer:-5
If $$x=(4096)^{7+4\sqrt{3}}$$, then which of the following equals to 64?
correct answer:-3
For some positive real number x, if $$\log_{\sqrt{3}}{(x)}+\frac{\log_{x}{(25)}}{\log_{x}{(0.008)}}=\frac{16}{3}$$, then the value of $$\log_{3}({3x^{2}})$$ is
correct answer:-7
$$\frac{2\times4\times8\times16}{(\log_{2}{4})^{2}(\log_{4}{8})^{3}(\log_{8}{16})^{4}}$$ equals
correct answer:-24
If a,b,c are non-zero and $$14^a=36^b=84^c$$, then $$6b(\frac{1}{c}-\frac{1}{a})$$ is equal to
correct answer:-3
If x is a positive real number such that $$x^8 + \left(\frac{1}{x}\right)^8 = 47$$, then the value of $$x^9 + \left(\frac{1}{x}\right)^9$$ is
correct answer:-4
If $$x$$ and $$y$$ are positive real numbers such that $$\log_{x}(x^2 + 12) = 4$$ and $$3 \log_{y} x = 1$$, then $$x + y $$ equals
correct answer:-3
If $$\log_4m + \log_4n = \log_2(m + n)$$ where m and n are positive real numbers, then which of the following must be true?
correct answer:-5
The value of $$\log_{a}({\frac{a}{b}})+\log_{b}({\frac{b}{a}})$$, for $$1<a\leq b$$ cannot be equal to
correct answer:-3
If $$\log_{4}{5}=(\log_{4}{y})(\log_{6}{\sqrt{5}})$$, then y equals
correct answer:-36
If $$(5.55)^x = (0.555)^y = 1000$$, then the value of $$\frac{1}{x} - \frac{1}{y}$$ is
correct answer:-1
Consider the equation $$\log_5(x - 2) = 2 \log_{25}(2x - 4)$$, where x is a real number.
For how many different values of x does the given equation hold?
correct answer:-1