Question 70

If $$(5.55)^x = (0.555)^y = 1000$$, then the value of $$\frac{1}{x} - \frac{1}{y}$$ is

Solution

We have, $$(5.55)^x = (0.555)^y = 1000$$

Taking log in base 10 on both sides,

x($$\log_{10}555$$-2) = y($$\log_{10}555$$-3) = 3

Then, x($$\log_{10}555$$-2) = 3.....(1)

y($$\log_{10}555$$-3) = 3 .....(2)

From (1) and (2)

=> $$\log_{10}555$$=$$\ \frac{\ 3}{x}$$+2=$$\ \frac{\ 3}{y}+3$$

=> $$\frac{1}{x} - \frac{1}{y}$$ = $$\frac{1}{3}$$

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App