Question 92

If m and n are integers such that $$(\surd2)^{19} 3^4 4^2 9^m 8^n = 3^n 16^m (\sqrt[4]{64})$$ then m is

Solution

We have, $$(\surd2)^{19} 3^4 4^2 9^m 8^n = 3^n 16^m (\sqrt[4]{64})$$

Converting both sides in powers of 2 and 3, we get

$$2^{\ \frac{19\ }{2}}3^42^43^{2m}2^{3n}$$ = $$3^n2^{4m}2^{\frac{\ 6}{4}}$$

Comparing the power of 2 we get, $$\ \frac{\ 19}{2}+4+3n\ =4m+\frac{\ 6}{4}\ $$

=> 4m=3n+12 .....(1)

Comparing the power of 3 we get, $$4+2m=n$$

Substituting the value of n in (1), we get

4m=3(4+2m)+12

=> m=-12

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App