Train T leaves station X for station Y at 3 pm. Train S, traveling at three quarters of the speed of T, leaves Y for X at 4 pm. The two trains pass each other at a station Z, where the distance between X and Z is three-fifths of that between X and Y. How many hours does train T take for its journey from X to Y?
Correct Answer: 15
Train T starts at 3 PM and train S starts at 4 PM.
Let the speed of train T be t.
=> Speed of train S = 0.75t.
When the trains meet, train t would have traveled for one more hour than train S.
Let us assume that the 2 trains meet x hours after 3 PM. Trains S would have traveled for x-1 hours.
Distance traveled by train T = xt
Distance traveled by train S = (x-1)*0.75t = 0.75xt-0.75t
We know that train T has traveled three fifths of the distance. Therefore, train S should have traveled two-fifths the distance between the 2 cities.
=> (xt)/(0.75xt-0.75t) = 3/2
2xt = 2.25xt-2.25t
0.25x = 2.25
x = 9 hours.
Train T takes 9 hours to cover three-fifths the distance. Therefore, to cover the entire distance, train T will take 9*(5/3) = 15 hours.
Therefore, 15 is the correct answer.
Create a FREE account and get: