Question 67

If x is a positive quantity such that $$2^{x}=3^{\log_{5}{2}}$$. then x is equal to


Givne that: $$2^{x}=3^{\log_{5}{2}}$$

$$\Rightarrow$$ $$2^{x}=2^{\log_{5}{3}}$$

$$\Rightarrow$$ $$x=\log_{5}{3}$$

$$\Rightarrow$$ $$x=\log_{5}{\dfrac{3*5}{5}}$$

$$\Rightarrow$$ $$x=\log_{5}{5}+\log_{5}{\dfrac{3}{5}}$$

$$\Rightarrow$$ $$x=1+\log_{5}{\dfrac{3}{5}}$$. Hence, option D is the correct answer. 

Video Solution


Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free


Boost your Prep!

Download App