Question 57

For a sequence of real numbers $$x_{1},x_{2},...x_{n}$$, If $$x_{1}-x_{2}+x_{3}-....+(-1)^{n+1}x_{n}=n^{2}+2n$$ for all natural numbers n, then the sum $$x_{49}+x_{50}$$ equals

Solution

Now as per the given series :
we get $$x_1=1+2\ =3$$
Now $$x_1-x_2=\ 8$$
so$$x_2=-5$$
Now $$x_1-x_2+x_3\ =\ 15$$
so $$x_3\ =7$$
so we get $$x_n\ =\left(-1\right)^{n+1}\left(2n+1\right)$$
so $$x_{49}\ =\ 99$$ and $$x_{50}\ =-101$$
Therefore $$x_{49\ }+x_{50}\ =-2$$

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App