Instructions

Read the passage carefully and answer the given questions

The complexity of modern problems often precludes any one person from fully understanding them. Factors contributing to rising obesity levels, for example, include transportation systems and infrastructure, media, convenience foods, changing social norms, human biology and psychological factors. . . . The multidimensional or layered character of complex problems also undermines the principle of meritocracy: the idea that the ā€˜best personā€™ should be hired. There is no best person. When putting together an oncological research team, a biotech company such as Gilead or Genentech would not construct a multiple-choice test and hire the top scorers, or hire people whose resumes score highest according to some performance criteria. Instead, they would seek diversity. They would build a team of people who bring diverse knowledge bases, tools and analytic skills. . . .

Believers in a meritocracy might grant that teams ought to be diverse but then argue that meritocratic principles should apply within each category. Thus the team should consist of the ā€˜bestā€™ mathematicians, the ā€˜bestā€™ oncologists, and the ā€˜bestā€™ biostatisticians from within the pool. That position suffers from a similar flaw. Even with a knowledge domain, no test or criteria applied to individuals will produce the best team. Each of these domains possesses such depth and breadth, that no test can exist. Consider the field of neuroscience. Upwards of 50,000 papers were published last year covering various techniques, domains of enquiry and levels of analysis, ranging from molecules and synapses up through networks of neurons. Given that complexity, any attempt to rank a collection of neuroscientists from best to worst, as if they were competitors in the 50-metre butterfly, must fail. What could be true is that given a specific task and the composition of a particular team, one scientist would be more likely to contribute than another. Optimal hiring depends on context. Optimal teams will be diverse.

Evidence for this claim can be seen in the way that papers and patents that combine diverse ideas tend to rank as high-impact. It can also be found in the structure of the so-called random decision forest, a state-of-the-art machine-learning algorithm. Random forests consist of ensembles of decision trees. If classifying pictures, each tree makes a vote: is that a picture of a fox or a dog? A weighted majority rules. Random forests can serve many ends. They can identify bank fraud and diseases, recommend ceiling fans and predict online dating behaviour. When building a forest, you do not select the best trees as they tend to make similar classifications. You want diversity. Programmers achieve that diversity by training each tree on different data, a technique known as bagging. They also boost the forest ā€˜cognitivelyā€™ by training trees on the hardest cases - those that the current forest gets wrong. This ensures even more diversity and accurate forests.

Yet the fallacy of meritocracy persists. Corporations, non-profits, governments, universities and even preschools test, score and hire the ā€˜bestā€™. This all but guarantees not creating the best team. Ranking people by common criteria produces homogeneity. . . . Thatā€™s not likely to lead to breakthroughs.

Question 24

On the basis of the passage, which of the following teams is likely to be most effective in solving the problem of rising obesity levels?

Solution

According to the author's main idea, the problem should be tackled by a diverse group of members from different fields. On the basis of this, we can eliminate options A and C because, in these options, the expert team consists of only nutritionists.Ā 
Out of options B and D, option D is better because it mentions a team of members who have performed well in their respective field. In option B, the members are selected on the parameter of meritocracy, which is not concurrent with the author's viewpoint.
Hence, option D is the correct answer.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App