$$m$$ is the smallest positive integer such that for any integer $$n \geq m$$, the quantity $$n^3 - 7n^2 + 11n - 5$$ is positive. What is the value of $$m$$?
$$n^3 - 7n^2 + 11n - 5 = (n-1)(n^2 - 6n +5) = (n-1)(n-1)(n-5)$$
This is positive for n > 5
So, m = 6
Create a FREE account and get: