CAT 1999 Question 18

Question 18

There is a circle of radius 1 cm. Each member of a sequence of regular polygons S1(n), n = 4,5,6,... , where n is the number of sides of the polygon, is circumscribing the circle; and each member of the sequence of regular polygons S2(n), n = 4,5,6.... where n is the number of sides of the polygon, is inscribed in the circle. Let L1(n) and L2(n) denote the perimeters of the corresponding polygons of S1(n) and S2(n). Then $$\frac{L1(13)+2\pi }{L2(17)}$$ is


Create a FREE account and get:

  • All Quant CAT Formulas and shortcuts PDF
  • 20 CAT previous papers with solutions PDF
  • Top 500 CAT Solved Questions for Free

Comments

Register with

OR

Boost your Prep!

Download App