CAT 2019 Question Paper (Slot 1) Question 84

Question 84

If $$a_1 + a_2 + a_3 + .... + a_n = 3(2^{n + 1} - 2)$$, for every $$n \geq 1$$, then $$a_{11}$$ equals


Correct Answer: 6144

Solution

11th term of series = $$a_{11}$$ = Sum of 11 terms - Sum of 10 terms = $$3(2^{11 + 1} - 2)$$-3$$(2^{10 + 1} - 2)$$ 

= 3$$(2^{12} - 2-2^{11} +2)$$=3$$(2^{11})(2-1)$$= 3*$$2^{11}$$ = 6144


View Video Solution


Create a FREE account and get:

  • All Quant CAT Formulas and shortcuts PDF
  • 30+ CAT previous papers with solutions PDF
  • Top 500 CAT Solved Questions for Free

Comments
Muskan siddique

1 month, 3 weeks ago

how is 2 power11 minus 2 power 10 equals 2 power 11

Register with

OR
cracku

Boost your Prep!

Download App