CAT 2018 Question Paper (Slot 1) Question 77

Question 77

Given an equilateral triangle T1 with side 24 cm, a second triangle T2 is formed by joining the midpoints of the sides of T1. Then a third triangle T3 is formed by joining the midpoints of the sides of T2. If this process of forming triangles is continued, the sum of the areas, in sq cm, of infinitely many such triangles T1, T2, T3,... will be

Solution

We can see that T$$_{2}$$ is formed by using the mid points of T$$_{1}$$. Hence, we can say that area of triangle of T$$_{2}$$ will be (1/4)th of the area of triangle T$$_{1}$$.

Area of triangle T$$_{1}$$ = $$\dfrac{\sqrt{3}}{4}*(24)^2$$ = $$144\sqrt{3}$$ sq. cm

Area of triangle T$$_{2}$$ = $$\dfrac{144\sqrt{3}}{4}$$ = $$36\sqrt{3}$$ sq. cm 

Sum of the area of all triangles =  T$$_{1}$$ + T$$_{2}$$ + T$$_{3}$$ + ... 

$$\Rightarrow$$ T$$_{1}$$ + T$$_{1}$$/$$4$$ + T$$_{1}$$/$$4^2$$ + ... 

$$\Rightarrow$$ $$\dfrac{T_{1}}{1 - 0.25}$$

$$\Rightarrow$$ $$\dfrac{4}{3}*T_{1}$$

$$\Rightarrow$$ $$\dfrac{4}{3}*144\sqrt{3}$$

$$\Rightarrow$$ $$192\sqrt{3}$$

Hence, option D is the correct answer. 


View Video Solution

video

Create a FREE account and get:

  • All Quant CAT Formulas and shortcuts PDF
  • 30+ CAT previous papers with solutions PDF
  • Top 500 CAT Solved Questions for Free

Comments
cracku

Boost your Prep!

Download App