In how many ways can a pair of integers (x , a) be chosen such that $$x^{2}-2\mid x\mid+\mid a-2\mid=0$$ ?
$$x^{2}-2\mid x\mid+\mid a-2\mid=0$$
where x>= 0 and x>=2
$$x^2-2x+a-2\ =0$$ Using quadratic equation we have $$x=\ 1+\sqrt{\ 3-a}\ and\ x=1-\sqrt{\ 3-a}$$ Only two integer values are possible
a=2 and a=3. So corresponding "x" values are x=1 and a=3, x=2 and a=2, x=0 and a=2
where x>=0 and x<2
Applying the above process we get x=1 and a=1
where x<0 and x>=2 we get a=3 and x=-1 , a=2 and x=-2
where x<0 and x<2 we get a=1 and x=-1
Hence there are total 7 values possible
Create a FREE account and get: