If $$3^a = 4, 4^b = 5, 5^c = 6, 6^d = 7, 7^e = 8$$ and $$8^f = 9$$, then the value of the product abcdef is
Correct Answer: 2
Taking a log for each of the expressions, we get the following:
$$\log_34=a,\ \log_45=b,\ \log_56=c,\ \log_67=d,\ \log_78=e,\ \log_89=f$$
The expression $$abcef$$ would then be: $$\log_34\times\ \log_45\times\ \log_56\times\ \log_67\times\ \log_78\times\ \log_89$$
Next, we can use this property of log: $$\frac{\log_ba}{\log_bc}=\log_ca$$
Using this, we get:
$$\frac{\log\ 4}{\log\ 3}\times\ \frac{\log\ 5}{\log\ 4}\times\ \frac{\log\ 6}{\log\ 5}\times\ \frac{\log\ 7}{\log\ 6}\times\ \frac{\log\ 8}{\log\ 7}\times\ \frac{\log\ 9}{\log\ 8}$$
All the terms will cancel out except: $$\frac{\log\ 9}{\log\ 3}=\log_39=2$$
Therefore, 2 is the correct answer.
Create a FREE account and get: