Hi Archana Sebastian,
Let 'N' be the last two digits of the number $$67^{225}$$.
We can say that N = $$67^{225}$$ mod $$100$$
$$\Rightarrow$$ N = $$(67^{224}*67)$$ mod $$100$$
$$\Rightarrow$$ N = $$((67^2)^{112}*67)$$ mod $$100$$
$$\Rightarrow$$ N = $$({4489}^{112}*67)$$ mod $$100$$
$$\Rightarrow$$ N = $$({89}^{112}*67)$$ mod $$100$$
89 when divided by 100, we can write it as -11 (In terms of the negative remainder), and since 89 power 112(even), -11 [power] 112 will be 11^112.
$$\Rightarrow$$ N = $$({11}^{112}*67)$$ mod $$100$$
$$\Rightarrow$$ N = $$(21*67)$$ mod $$100$$
$$\Rightarrow$$ N = 07
Please let me know if you have any other queries regarding the same.
I hope this helps!