Lakshya sale (30 May-1 June) 🎖️ Last 180 days to CAT 🥳 Get upto 70% Off today. Take the Vow now
Edit MetaData
If $$\log_{2}{\log_{7}{(x^2 - x+37)}}$$ = 1, then what could be the value of ‘x’?
3
5
4
None of these
$$\log_{2}{\log_{7}{(x^2 - x+37)}}$$ = 1
$$\log_{7}{(x^2 - x+37)}$$ = $$2$$
$$(x^2 - x+37)$$ = $$7^{2}$$
Given eq. can be reduced to $$x^2 - x + 37 = 49$$
So x can be either -3 or 4.
Click on the Email ☝️ to Watch the Video Solution
how equation mentioned above can be reudced
Hi vivek, we have updated the solution.
Create a FREE account and get:
CAT Logarithms
CAT Profit and Loss
CAT Simple Interest Compound Interest
CAT Remainders
CAT Number Series
CAT Data Sufficiency
CAT Arithmetic
CAT Algebra
CAT Logarithms, Surds and Indices
CAT Venn Diagrams
CAT Probability, Combinatorics
CAT Profit And Loss
CAT Progressions and Series
CAT Time Speed Distance
CAT Mensuration
CAT Averages Mixtures Alligations
CAT Number Systems
CAT Coordinate Geometry
CAT Averages
CAT Percentages
CAT Time, Speed and Distance
CAT Functions, Graphs and Statistics
CAT Geometry
CAT Inequalities
CAT Linear Equations
CAT Time And Work
CAT Averages, Ratio and Proportion
CAT Quadratic Equations
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Join cracku.in for Expert Guidance.