For the following questions answer them individually
$$10_{C_0} + 10_{C_2} + ........ + 10_{C_{10}} =$$
$$\begin{bmatrix}-1 & 2 \\1 & -1 \end{bmatrix} \begin{bmatrix}x \\y \end{bmatrix} = \begin{bmatrix}4 \\5 \end{bmatrix} \Rightarrow 3x - 4y =$$
The system of equations:
x + y + z = 3
2x + 5y + 4z = 11
5x + 2y + z = 10 has
$$\lim_{x \rightarrow 0}\left(\frac{e^{5x} - e^{3x}}{e^{4x} - e^{x}}\right) =$$
$$(x + y)^{a + b} = x^ay^b \Rightarrow \frac{dy}{dx} =$$
In a $$\triangle ABC , \angle B = 55^\circ, \angle C = 45^\circ$$ and bisector of $$\angle A$$ meets BC at a point D. Then $$\angle CAD =$$
If the point A, B, C and D are Concyclic, then $$\angle ABc + \angle ADC =$$
A circle touches all the four sides of a quadrilateral ABCD as shown below. If AB = 3 cm. BC = 4 cm and CD = 5 cm then AD =
The points A (5, 2), B (6, -15), C (0, 0) are vertices of the triangle which is
If three vertices of a rectangle are (4, 1), (7, 4) and (13, -2) then the fourth vertex is