🥳 Mega New Year Sale 🎉Apply coupon WECOMEMBA 🎁 Get Flat ₹ 7000 Off on CAT 2026 Course. Grab Now
Edit MetaData
Educational materials for IPMAT and IIMB UG preparation
What should come in place of question mark (?) in the following questions ?
(8.2% of 365)-(1.75% of 108)= ?
16.02
28.04
42.34
53.76
None of these
8.2% * 365 = 29.93
1.75% * 108 = 1.89
So, 8.2%*365 - 1.75%*108 = 29.93 - 1.89 =28.04
$$[(135)^{2}\div15\times32)]\div?=45\times24$$
18
24
36
44
The number in the place of the question mark equals $$\frac{135^2 \div 15 \times 32}{45 \times 24} = \frac{135 \times 135 \div 15 \times 32}{45 \times 24}$$
$$\frac{135\times135\div15\times32}{45 \times 24}=\frac{9 \times 9 \times 32}{3\times24}=36$$
$$ (96)^{2}+(63)^{2}=(?)^{2}-(111)^{2}-8350$$
33856
30276
174
184
Let the number in the question mark be X.
So, $$X^2 = 96^2 + 63^2 + 111^2 + 8350$$
So, $$X^2 = 9216 + 3969 + 12321 + 8350 = 33856 = 184^2$$
So, $$X = 184 $$
4368+2158-596-?=3421+1262
1066
1174
1247
1387
So, X = 4368+2158-596-3421-1262 = 1247
$$2172\div?=1832-956-514$$
6
8
10
12
Let them number in the question mark be X.
So, $$2172 \div $$ X $$=1832 - 956 - 514 = 362$$
So, $$2172 \div$$ X = $$362$$
Or, X $$=2172 \div 362 = 6$$
666.06+66.60+0.66+6.06+6+60=?
819.56
808.38
826.44
798.62
The number in the question mark equals 666.06 + 66.60 + 0.66 + 6.06 + 6 + 60 = 805.38
15.594-4.312-3.517-1.689=?
6.706
6.760
6.670
6.607
The number in the question mark equals 15.594 - 4.312 - 3.517 - 1.689 = 6.076
As it doesn't equal any of the four options, the correct answer is 'None of These'
$$205\times?\times13=33625+25005$$
22
27
33
39
Let the number which should be used in place of the question mark equals X.
Hence, $$205 \times$$ X$$\times 13 = 33625 + 25005 = 58630$$
So, $$205 \times$$ X $$= 4510$$
So, X$$= 22$$
$$69\div3\times0.85+14.5-3=?$$
36.45
23.85
42.95
18.65
$$69 \div 3 = 23$$
$$23 \times 0.85 = 19.55$$
So, $$19.55 + 14.5 - 3 = 31.05$$
As this is not given in the list of options provided, the correct answer is 'None of these'
$$(10)^{24}\times (10)^{-21}=?$$
3
100
1000
By rule of indices,
ab x ac = ab+c
Hence, by this rule, we can solve as,
$$(10)^{24}\times (10)^{-21}= (10)^{24-21} =10^3 = 1000$$
Therefore, correct option is D.
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Day-wise Structured & Planned Preparation Guide
By proceeding you agree to create your account
Free CAT Schedule PDF will be sent to your email address soon !!!
Join cracku.in for Expert Guidance.