JEE (Advanced) 2019 Paper-2

Instructions

For the following questions answer them individually

JEE (Advanced) 2019 Paper-2 - Question 41


Let
$$f(x) = \frac{\sin \pi x}{x^2}, x > 0.$$
Let $$x_1 < x_2 < x_3 < ... < x_n < ...$$ be all the points of local maximum off
and $$y_1 < y_2 < y_3 < ... < y_n < ...$$ be all the points of local minimum off.
Then which of the following options is/are correct?

Video Solution

JEE (Advanced) 2019 Paper-2 - Question 42


For $$a \in R, |a| > 1,$$ let
$$\lim_{n \rightarrow \infty} \left(\frac{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}{n^{\frac{7}{3} \left(\frac{1}{\left(an + 1\right)^2} + \frac{1}{\left(an + 2\right)^2} + ... + \frac{1}{\left(an + n\right)^2} \right)}}\right) = 54.$$
Then the possible value(s) of a is/are

Video Solution

JEE (Advanced) 2019 Paper-2 - Question 43


Let $$f : R \rightarrow R$$ be given by $$f(x) = (x - 1)(x - 2)(x - 5).$$ Define
$$F(x) = \int_{0}^{x} f(t) dt, x > 0.$$
Then which of the following options is/are correct?

Video Solution

JEE (Advanced) 2019 Paper-2 - Question 44


Three lines
$$L_1 : \overrightarrow{r} = \lambda \widehat{i}, \lambda \in R$$
$$L_2: \overrightarrow{r} = \widehat{k} + \mu \widehat{j}, \mu \in R$$ and
$$L_3: \overrightarrow{r} = \widehat{i} + \widehat{j} + v \widehat{k}, v \in R$$
are given. For which point(s) Q on $$L_2$$ can wefind a point P on $$L_1$$ and a point R on $$L_3$$ so that P,Q and R are collinear?

Video Solution

JEE (Advanced) 2019 Paper-2 - Question 45


Suppose
$$det\begin{bmatrix} \sum_{k = 0}^nk & \sum_{k = 0}^n {^nC_k k^2} \\\sum_{k = 0}^n {^n C_k k} & \sum_{k = 0}^n {^n C_k 3^k} \end{bmatrix} = 0$$
holds for somepositive integer n. Then $$\sum_{k = 0}^n \frac {^nC_k}{k + 1}$$ Equals __________

Backspace
789
456
123
0.-
Clear All
Video Solution

JEE (Advanced) 2019 Paper-2 - Question 46


Five persons A, B, C, D and E are seated in a circular arrangement. If each of them is given a hat of one of the three colours red, blue and green, then the number of ways of distributing the hats such that the persons seated in adjacent seats get different coloured hats is__

Backspace
789
456
123
0.-
Clear All
Video Solution

JEE (Advanced) 2019 Paper-2 - Question 47


Let |X| denote the number of elements in a set X. Let S = {1, 2,3, 4,5, 6} be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A, B) such that $$1 \leq |B| < |A|$$, equals ________

Backspace
789
456
123
0.-
Clear All
Video Solution

JEE (Advanced) 2019 Paper-2 - Question 48


The value of
$$\sec^{-1} \left(\frac{1}{4}\sum_{k = 0}^{10} \sec \left(\frac{7\pi}{12} + \frac{k\pi}{2}\right) \sec \left(\frac{7\pi}{12} + \frac{\left(k + 1\right)\pi}{2}\right) \right)$$
in the interval $$\begin{bmatrix}-\frac {\pi}{4}, & \frac{3\pi}{4} \end{bmatrix}$$ equals _______

Backspace
789
456
123
0.-
Clear All
Video Solution

JEE (Advanced) 2019 Paper-2 - Question 49


The value of the integral
$$\int_{0}^{\pi/2} \frac{3 \sqrt{\cos \theta}}{\left(\sqrt{\cos \theta} + \sqrt{\sin \theta}\right)^5} d \theta$$
equals ______

Backspace
789
456
123
0.-
Clear All
Video Solution

JEE (Advanced) 2019 Paper-2 - Question 50


Let $$\overrightarrow{a} = 2\widehat{i} + \widehat{j} - \widehat{k}$$ and $$\overrightarrow{b} = \widehat{i} + 2\widehat{j} + \widehat{k}$$ be two vectors. Consider a vector $$\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}, \alpha, \beta \in R.$$ If the projection of $$\overrightarrow{c}$$ on the vector $$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$ is $$3\sqrt{2},$$ then the minimum value of $$\left(\overrightarrow{c} - \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right) . \overrightarrow{c}$$ equals _________ .

Backspace
789
456
123
0.-
Clear All
Video Solution
cracku

Boost your Prep!

Download App