Three lines
$$L_1 : \overrightarrow{r} = \lambda \widehat{i}, \lambda \in R$$
$$L_2: \overrightarrow{r} = \widehat{k} + \mu \widehat{j}, \mu \in R$$ and
$$L_3: \overrightarrow{r} = \widehat{i} + \widehat{j} + v \widehat{k}, v \in R$$
are given. For which point(s) Q on $$L_2$$ can wefind a point P on $$L_1$$ and a point R on $$L_3$$ so that P,Q and R are collinear?
Create a FREE account and get: