Expression : (tanA - tanB)/(1 + tanAtanB) = x
= $$(\frac{sin A}{cos A} - \frac{sin B}{cos B}) \div (1 + \frac{sin A sin B}{cos A cos B})$$
= $$(\frac{sin Acos B - cos Asin B}{cos Acos B}) \div (\frac{cos Acos B + sin Asin B}{cos Acos B})$$
= $$[\frac{sin(A - B)}{cos A cos B}] \div [\frac{cos(A - B)}{cos A cos B}]$$
= $$[\frac{sin(A - B)}{cos A cos B}] \times [\frac{cos A cos B}{cos(A - B)}]$$
= $$\frac{sin(A - B)}{cos(A - B)} = tan(A - B)$$
=> Ans - (A)
Create a FREE account and get: