Expression : $$tan^{2}A + cot^{2}$$A + 2 = x
Using, $$(sec^2 A - tan^2 A = 1)$$ and $$(cosec^2 A - cot^2 A = 1)$$
= $$(sec^2 A - 1) + (cosec^2 A - 1) + 2$$
= $$sec^2 A + cosec^2 A = \frac{1}{cos^2 A} + \frac{1}{sin^2 A}$$
= $$\frac{sin^2 A + cos^2 A}{cos^2 A sin^2 A}$$
= $$\frac{1}{cos^2 A sin^2 A} = sec^2 Acosec^2 A$$
=> Ans - (C)
Create a FREE account and get: