Question 96

If $$tan^{2}A + cot^{2}$$A + 2 = x, then the value of x is

Solution

Expression : $$tan^{2}A + cot^{2}$$A + 2 = x

Using, $$(sec^2 A - tan^2 A = 1)$$ and $$(cosec^2 A - cot^2 A = 1)$$

= $$(sec^2 A - 1) + (cosec^2 A - 1) + 2$$

= $$sec^2 A + cosec^2 A = \frac{1}{cos^2 A} + \frac{1}{sin^2 A}$$

= $$\frac{sin^2 A + cos^2 A}{cos^2 A sin^2 A}$$

= $$\frac{1}{cos^2 A sin^2 A} = sec^2 Acosec^2 A$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App