Join WhatsApp Icon CAT WhatsApp Group
Question 84

If the sum of squares of two numbers is 97, then which one of the following cannot be their product?

Let 'a' and 'b' are those two numbers. 

$$\Rightarrow$$ $$a^2+b^2 = 97$$

$$\Rightarrow$$ $$a^2+b^2-2ab = 97-2ab$$

$$\Rightarrow$$ $$(a-b)^2 = 97-2ab$$

We know that $$(a-b)^2$$ $$\geq$$ 0

$$\Rightarrow$$ 97-2ab $$\geq$$ 0

$$\Rightarrow$$ ab $$\leq$$ 48.5

Hence, ab $$\neq$$ 64. Therefore, option D is the correct answer.

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free