Let $$\frac{x^2-6x+10}{3-x}=p$$
$$x^2-6x+10=3p-px$$
$$x^2-\left(6-p\right)x+10-3p=0$$
Since the equation will have real roots,
$$\left(6-p\right)^2-4\times\left(10-3p\right)\ge0$$
$$p^2-12p+12p+36-40\ge0$$
$$p^2\ge4$$
$$p\ge2\ ,\ p\le-2$$
Now, when $$p=-2$$, $$x = 4$$. Since it is given that $$x<3$$, thus this value will be discarded.
Now, $$\frac{1}{2}$$ and $$-\frac{1}{2}$$ do not come in the mentioned range.
when $$p=2$$, $$x = 2$$
Thus, the minimum possible value of p will be 2.
Thus, the correct option is B.
Alternate explanation:
Since $$x<3$$,
$$3-x>0$$
Let $$3-x=y$$. So, $$y>0$$.
Now, $$\frac{x^2-6x+10}{3-x}=\frac{x^2-6x+9+1}{3-x}$$
=> $$\frac{\left(3-x\right)^2+1}{3-x}$$
Since $$3-x=y$$, the equation will transform to $$\frac{y^2+1}{y}$$ or $$y+\frac{1}{y}$$
The minimum value of the expression $$y+\frac{1}{y}$$ for $$y>0$$ will at $$y=1$$
i.e., Minimum value = $$1+1=2$$
Thus, the correct option is B.
Create a FREE account and get: