Question 61

If a/b + b/a = 1, then the value of $$a^{3} + b^{3}$$ will be

Solution

Given : $$\frac{a}{b}+\frac{b}{a}=1$$

=> $$\frac{a^2+b^2}{ab}=1$$

=> $$a^2+b^2=ab$$ -----------(i)

We know that, $$(a^3+b^3)=(a+b)(a^2+b^2-ab)$$

Substituting value from equation (i), we get :

=> $$(a^3+b^3)=(a+b)(ab-ab)$$

=> $$(a^3+b^3)=(a+b) \times 0=0$$

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App