Question 56

A tree breaks due to storm and the broken part bends so that the top of the tree first touches the ground, making an angle of 30 with the horizontal. The distance from the foot of the tree to the point where the top touches the ground is 10 m. The height of the tree is

Solution

Given : BC = 10 m and $$\angle ACB=30^\circ$$

To find : AC + AB = ?

Solution : In right $$\triangle$$ ABC

=> $$tan(30^\circ)=\frac{AB}{BC}$$

=> $$\frac{1}{\sqrt3}=\frac{AB}{10}$$

=> $$AB=\frac{10}{\sqrt3}$$ ---------------(i)

Similarly, $$cos(30^\circ)=\frac{BC}{AC}$$

=> $$\frac{\sqrt3}{2}=\frac{10}{AC}$$

=> $$AC=\frac{20}{\sqrt3}$$ ------------------(ii)

$$\therefore$$ Height of tree = $$AB+AC$$

= $$\frac{10}{\sqrt3}+\frac{20}{\sqrt3}$$

= $$\frac{30}{\sqrt3}=10\sqrt3$$ m

=> Ans - (B)

Your Doubts

Ask a Doubt (know more)

Drop Your File Here!

** You can Drag and Drop an Image in the above textarea
add image

Create a FREE account and get:

  • All Quant Formulas and Shortcuts PDF
  • 100+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App