Question 56

A tree breaks due to storm and the broken part bends so that the top of the tree first touches the ground, making an angle of 30 with the horizontal. The distance from the foot of the tree to the point where the top touches the ground is 10 m. The height of the tree is

Given : BC = 10 m and $$\angle ACB=30^\circ$$

To find : AC + AB = ?

Solution : In right $$\triangle$$ ABC

=> $$tan(30^\circ)=\frac{AB}{BC}$$

=> $$\frac{1}{\sqrt3}=\frac{AB}{10}$$

=> $$AB=\frac{10}{\sqrt3}$$ ---------------(i)

Similarly, $$cos(30^\circ)=\frac{BC}{AC}$$

=> $$\frac{\sqrt3}{2}=\frac{10}{AC}$$

=> $$AC=\frac{20}{\sqrt3}$$ ------------------(ii)

$$\therefore$$ Height of tree = $$AB+AC$$

= $$\frac{10}{\sqrt3}+\frac{20}{\sqrt3}$$

= $$\frac{30}{\sqrt3}=10\sqrt3$$ m

=> Ans - (B)

Create a FREE account and get:

  • All Quant Formulas and Shortcuts PDF
  • 100+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

MAT Quant Questions | MAT Quantitative Ability

MAT DILR Questions | LRDI Questions For MAT

MAT Verbal Ability Questions | VARC Questions For MAT