If $$pqr = 1$$ thenÂ
$$\left(\left(\frac{1}{(1 + p + q^{-1})}\right) + \left(\frac{1}{(1 + q + r^{-1})}\right) + \left(\frac{1}{(1 + r + p^{-1})}\right)\right)$$ is equal to
Given : $$pqr=1$$
Expression :Â $$\left(\left(\frac{1}{(1 + p + q^{-1})}\right) + \left(\frac{1}{(1 + q + r^{-1})}\right) + \left(\frac{1}{(1 + r + p^{-1})}\right)\right)$$
= $$\frac{1}{(1+p+\frac{1}{q})}+\frac{1}{(1+q+\frac{1}{r})}+\frac{1}{(1+r+\frac{1}{p})}$$
=Â $$\frac{q}{(1+q+pq)}+\frac{1}{(1+q+pq)}+\frac{1}{(1+\frac{1}{pq}+\frac{1}{p})}$$
= $$\frac{q}{(1+q+pq)}+\frac{1}{(1+q+pq)}+\frac{pq}{(1+q+pq)}$$
= $$\frac{1+q+pq}{1+q+pq}=1$$
=> Ans - (A)
Create a FREE account and get: