Sign in
Please select an account to continue using cracku.in
↓ →
Arrange the following in descending order
(A) $$3^{3^{3^{3}}}$$
(B) $$3^{(33)^{3}}$$
(C) $$(3^3)^{33}$$
(D) $$3^{333}$$
Choose the correct answer from the options given below :
$$(A)$$: $$3^{3^{3^{3}}}$$ = $$3^{3^{27}}$$
$$(B)$$: $$3^{(33)^{3}}$$ = $$3^{(33)^{3}}$$
$$(C)$$: $$(3^3)^{33}$$ = $$3^{99}$$
$$(D)$$: $$3^{333}$$
So, the powers of 3 in (A), (B), (C) and (D) are: $$3^{27},33^3,99,333$$ respectively.
Now, we know, $$3^{27}>33^3>333>99$$
So, the powers of $$3$$ in $$(A)>(B)>(D)>(C)$$
So, correct answer is option $$(A)$$
Create a FREE account and get:
CMAT Logarithms, Surds and Indices
CMAT Indian National Static GK
CMAT Banking Computer Knowledge
CMAT Economic and Social Issues
CMAT Data Interpretation Basics
CMAT Functions, Graphs and Statistics
CMAT Probability, Combinatorics
CMAT Averages, Ratio and Proportion
CMAT Innovation and Entrepreneurship
Educational materials for CAT preparation