Question 4

Arrange the following in descending order
(A) $$3^{3^{3^{3}}}$$
(B) $$3^{(33)^{3}}$$
(C) $$(3^3)^{33}$$
(D) $$3^{333}$$
Choose the correct answer from the options given below :

$$(A)$$: $$3^{3^{3^{3}}}$$ = $$3^{3^{27}}$$

$$(B)$$: $$3^{(33)^{3}}$$ = $$3^{(33)^{3}}$$

$$(C)$$: $$(3^3)^{33}$$ = $$3^{99}$$

$$(D)$$: $$3^{333}$$

So, the powers of 3 in (A), (B), (C) and (D) are: $$3^{27},33^3,99,333$$ respectively.

Now, we know, $$3^{27}>33^3>333>99$$

So, the powers of $$3$$ in $$(A)>(B)>(D)>(C)$$

So, correct answer is option $$(A)$$

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with detau solutions PDF
  • Top 500 MBA exam Solved Questions for Free

MAT Quant Questions | MAT Quantitative Ability

MAT DILR Questions | LRDI Questions For MAT

MAT Verbal Ability Questions | VARC Questions For MAT