Question 14

What is the sum of the following series: $$ \frac{1}{1 \times 2} + \frac{1}{2 \times 3}+\frac {1}{3 \times 4}$$ ....... $$+ \frac{1}{100 \times 101}$$?


Given series can be written as:

$$\sum_{n=1}^{100} (\frac{1}{n\times (n+1)})$$

or $$\sum_{n=1}^{100} (\frac{(n+1)-n}{n\times (n+1)})$$

or $$\sum_{n=1}^{100} (\frac{1}{n} - \frac{1}{n+1})$$

After putting values of n from 1 to 100, all terms will cancel out, only first and last terms will be there

i.e. $$1-\frac{1}{101}$$

or $$\frac{100}{101}$$

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free


Boost your Prep!

Download App