Sign in
Please select an account to continue using cracku.in
↓ →
A chord AB of a circle $$C_1$$ of radius $$\left(\sqrt{3}+1\right)$$ cm touches a circle $$C$$ which is concentric to $$C_1$$ . If the radius of $$C$$ is $$\left(\sqrt{3}-1\right)$$ cm., the length of AB is :
OB = $$(\sqrt{3} + 1)$$ cm
OD = $$(\sqrt{3} - 1)$$ cm
In right $$\triangle$$ ODB
=> $$(DB)^2 = (OB)^2 - (OD)^2$$
=> $$(DB)^2 = (\sqrt{3} + 1)^2 - (\sqrt{3} - 1)^2$$
=> $$(DB)^2 = (4 + 2\sqrt{3}) - (4 - 2\sqrt{3})$$
=> $$(DB)^2 = 4\sqrt{3}$$
=> $$DB = \sqrt{4\sqrt{3}}$$
=> $$DB = 2\sqrt[4]{3}$$
$$AB = 4\sqrt[4]{3}$$
Create a FREE account and get: