Solution
Given that, S = 4+44+444+...
$$\Rightarrow$$ $$S = \frac{4}{9}(9+99+999+...)$$
$$\Rightarrow$$ $$S = \frac{4}{9}(10-1+10^2-1+10^3-1+...+10^n-1)$$
$$\Rightarrow$$ $$S = \frac{4}{9}(10+10^2+10^3+...+10^n-n)$$
$$\Rightarrow$$ $$S = \frac{4}{9}(\frac{10(10^n - 1)}{10-1}-n)$$
$$\Rightarrow$$ $$S = \frac{40}{81}(10^n - 1) - \frac{4n}{9}$$
Hence, option C is the correct answer.
Alternate method:
Solving for n = 2
Sum of series = 4+44 = 48
Substituting n = 2 in options
(A) $$\frac{40}{81}(8^{2}-1)-\frac{5*2}{9}$$ = $$\frac{280-10}{9}$$ = 30
(B) $$\frac{40}{81}(8^{2}-1)-\frac{4*2}{9}$$ = $$\frac{280-8}{9}$$ = $$\frac{272}{9}$$
(C) $$\frac{40}{81}(10^{2}-1)-\frac{4*2}{9}$$ = $$\frac{440-8}{9}$$ = 48
(D) $$\frac{40}{81}(10^{2}-1)-\frac{5*2}{9}$$ = $$\frac{440-10}{9}$$ = $$\frac{430}{9}$$