I suggest that the essential character of the Trade Cycle and, especially, the regularity of time-sequence and of duration which justifies us in calling it a cycle, is mainly due to the way in which the marginal efficiency of capital fluctuates. The Trade Cycle is best regarded, I think, as being occasioned by a cyclical change in the marginal efficiency of capital, though complicated and often aggravated by associated changes in the other significant short period variables of the economic system.
By a cyclical movement we mean that as the system progresses in, e.g. the upward direction, the forces propelling it upwards at first gather force and have a cumulative effect on one another but gradually lose their strength until at a certain point they tend to be replaced by forces operating in the opposite direction; which in turn gather force for a time and accentuate one another, until they too, having reached their maximum development, wane and give place to their opposite. We do not, however, merely mean by a cyclical movement that upward and downward tendencies, once started, do not persist for ever in the same direction but are ultimately reversed. We mean also that there is some recognizable degree of regularity in the time-sequence and duration of the upward and downward movements. There is, however, another characteristic of what we call the Trade Cycle which our explanation must cover if it is to be adequate; namely, the phenomenon of the ‘crisis’ the fact that the substitution of a downward for an upward tendency often takes place suddenly and violently, whereas there is, as a rule, no such sharp turning-point when an upward is substituted for a downward tendency. Any fluctuation in investment not offset by a corresponding change in the propensity to consume will, of course, result in a fluctuation in employment. Since, therefore, the volume of investment is subject to highly complex influences, it is highly improbable that all fluctuations either in investment itself or in the marginal efficiency of capital will be of a cyclical character.
We have seen above that the marginal efficiency of capital depends, not only on the existing abundance or scarcity of capital-goods and the current cost of production of capital- goods, but also on current expectations as to the future yield of capital-goods. In the case of durable assets it is, therefore, natural and reasonable that expectations of the future should play a dominant part in determining the scale on which new investment is deemed advisable. But, as we have seen, the basis for such expectations is very precarious. Being based on shifting and unreliable evidence, they are subject to sudden and violent changes. Now, we have been accustomed in explaining the ‘crisis’ to lay stress on the rising tendency of the rate of interest under the influence of the increased demand for money both for trade and speculative purposes. At times this factor may certainly play an aggravating and, occasionally perhaps, an initiating part. But I suggest that a more typical, and often the predominant, explanation of the crisis is, not primarily a rise in the rate of interest, but a sudden collapse in the marginal efficiency of capital. The later stages of the boom are characterized by optimistic expectations as to the future yield of capital goods sufficiently strong to offset their growing abundance and their rising costs of production and, probably, a rise in the rate of interest also. It is of the nature of organized investment markets, under the influence of purchasers largely ignorant of what they are buying and of speculators who are more concerned with forecasting the next shift of market sentiment than with a reasonable estimate of the future yield of capital-assets, that, when disillusion falls upon an over-optimistic and over- bought market, it should fall with sudden and even catastrophic force. Moreover, the dismay and uncertainty as to the future which accompanies a collapse in the marginal efficiency of capital naturally precipitates a sharp increase in liquidity-preference and hence a rise in the rate of interest. Thus the fact that a collapse in the marginal efficiency of capital tends to be associated with a rise in the rate of interest may seriously aggravate the decline in investment. But the essence of the situation is to be found, nevertheless, in the collapse in the marginal efficiency of capital, particularly in the case of those types of capital which have been contributing most to the previous phase of heavy new investment. Liquidity preference, except those manifestations of it which are associated with increasing trade and speculation, does not increase until after the collapse in the marginal efficiency of capital. It is this, indeed, which renders the slump so intractable.
Which of the following explains the phenomenon of crisis?
I. A sudden collapse in the marginal efficiency of capital
II. Increase in the rate of interest causing the decline in investments
III. A sudden and violent substitution of upward movement by a downward tendency
IV. Decline in the liquidity preference of the investors
The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.
The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.
In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.
Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.
All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."
Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.
Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report."
What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.
“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space.
"The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."
Which of the following statements is correct?
(I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet
(II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature
(III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions
(IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:
Increasing warming of earth has been due to:
(I) Increased manual intervention in the manufacturing process
(II) The fallout of mechanization of production
(III) Industrial revolution
(IV) Over reliance on non- replenishible energy sources
Choose the correct option:
Which of the following according to the passage are the features of “fuels from heaven”?
(I) Replenishability
(II) Storability
(III) Cost-effectiveness
(IV) Harmlessness
"All raw sugar comes to us this way. You see, it is about the color of maple or brown sugar, but it is not nearly so pure, for it has a great deal of dirt mixed with it when we first get it." "Where does it come from?" inquired Bob.
"Largely from the plantations of Cuba and Porto Rico. Toward the end of the year we also get raw sugar from Java, and by the time this is refined and ready for the market the new crop from the West Indies comes along. In addition to this we get consignments from the Philippine Islands, the Hawaiian Islands, South America, Formosa, and Egypt. I suppose it is quite unnecessary to tell you young men anything of how the cane is grown; of course you know all that."
"I don't believe we do, except in a general way," Bob admitted honestly. "I am ashamed to be so green about a thing at which Dad has been working for years. I don't know why I never asked about it before. I guess I never was interested. I simply took it for granted."
"That's the way with most of us," was the superintendent's kindly answer. "We accept many things in the world without actually knowing much about them, and it is not until something brings our ignorance before us that we take the pains to focus our attention and learn about them. So do not be ashamed that you do not know about sugar raising; I didn't when I was your age. Suppose, then, I give you a little idea of what happens before this raw sugar can come to us."
"I wish you would," exclaimed both boys in a breath.
"Probably in your school geographies you have seen pictures of sugar-cane and know that it is a tall perennial not unlike our Indian corn in appearance; it has broad, flat leaves that sometimes measure as many as three feet in length, and often the stalk itself is twenty feet high. This stalk is jointed like a bamboo pole, the joints being about three inches apart near the roots and increasing in distance the higher one gets from the ground."
"How do they plant it?" Bob asked.
"It can be planted from seed, but this method takes much time and patience; the usual way is to plant it from cuttings, or slips. The first growth from these cuttings is called plant cane; after these are taken off the roots send out ratoons or shoots from which the crop of one or two years, and sometimes longer, is taken. If the soil is not rich and moist replanting is more frequently necessary and in places like Louisiana, where there is annual frost, planting must be done each year. When the cane is ripe it is cut and brought from the field to a central sugar mill, where heavy iron rollers crush from it all the juice. This liquid drips through into troughs from which it is carried to evaporators where the water portion of the sap is eliminated and the juice left; you would be surprised if you were to see this liquid. It looks like nothing so much as the soapy, bluish gray dish-water that is left in the pan after the dishes have been washed."
"A tempting picture!" Van exclaimed.
"I know it. Sugar isn't very attractive during its process of preparation," agreed Mr. Hennessey. "The sweet liquid left after the water has been extracted is then poured into vacuum pans to be boiled until the crystals form in it, after which it is put into whirling machines, called centrifugal machines that separate the dry sugar from the syrup with which it is mixed. This syrup is later boiled into molasses. The sugar is then dried and packed in these burlap sacks such as you see here, or in hogsheads, and shipped to refineries to be cleansed and whitened."
"Isn't any of the sugar refined in the places where it grows?" queried Bob.
"Practically none. Large refining plants are too expensive to be erected everywhere; it therefore seems better that they should be built in our large cities, where the shipping facilities are good not only for receiving sugar in its raw state but for distributing it after it has been refined and is ready for sale. Here, too, machinery can more easily be bought and the business handled with less difficulty."
Which one of the following is not a essential condition for setting up sugar refining plants?
Each of the questions presents a sentence, part of which is underlined. Beneath the sentence you will find four ways of phrasing the underlined part. Follow the requirements of standard written English to choose your answer, paying attention to grammar, word choice, and sentence construction. Select the answer that produces the most effective sentence; your answer should make the sentence clear, exact, and free of grammatical error. It should also minimize awkwardness, ambiguity, and redundancy.
When I first became brand manager, we were spending most of our advertising budget to promote our products in the winter. It had worked in North America and Europe, where people caught colds mainly in that season. Our monthly volume data suggested however stubbornly we were shipping a lot of VapoRub between July and September, the hot monsoon season.