A chord AB of length 24 cm is drawn in a circle of radius 13cm.Find the area of the shaded portion APB.
In $$\triangle$$OAB
OC is drawn perpendicular to AB
By symmetry AC=CB=AB/2 =24/2= 12
OA=13
$$OC^{2}=OA^{2}-AC^{2}$$
$$OC^{2}=13^{2}-12^{2}$$=25
OC=5
So area of shaded region = Area of sector OAPB - Area of $$\triangle$$OAB
=$$\frac{x}{360}*\pi*(OA)^{2}$$-$$\frac{1}{2}*(AB)*(OC)$$
=$$\frac{x}{360}*\pi*(13)^{2}$$-$$\frac{1}{2}*(24)*(5)$$
=$$\frac{169\pi x}{360}-60cm^{2}$$
Create a FREE account and get: