Given : $$\angle$$ ACB = $$15^\circ$$
To find : $$\angle$$ OAB = $$x=?$$
Solution : Angle subtended by an arc at the centre is double the angle subtended by the same arc at any other point on the circle.
=>Â $$\angle$$Â AOB = $$2\times15^\circ=30^\circ$$ -------------(i)
Also, in $$\triangle$$Â AOB, OA = OB = radius of circle,
=>Â $$\angle$$Â OAB =Â $$\angle$$Â OBA = $$x$$Â Â Â [Angles opposite to equal sides]
Thus, in $$\triangle$$ AOB
=>Â $$\angle x+$$Â $$\angle x+$$Â $$\angle$$Â AOB = $$180^\circ$$
=>Â $$2\angle x=180^\circ-30^\circ$$Â Â Â [Using equation (i)]
=> $$\angle x=\frac{150^\circ}{2}=75^\circ$$Â
=> Ans - (C)
Create a FREE account and get: