If $$xy=\frac{a+2}{3}$$ and $$\frac{x}{y}=\frac{1}{3}$$, then find the value of $$\frac{x^{2}+y^{2}}{x^{2-}y^{2}}$$
Given : $$xy=\frac{a+2}{3}$$ and $$\frac{x}{y}=\frac{1}{3}$$
Multiplying both equations, we get : $$x^2=\frac{a+2}{9}$$ -------------(i)
Dividing both equations, => $$y^2=a+2$$ -------------(ii)
Adding equations (i) and (ii),
=> $$x^2+y^2=(\frac{a+2}{9})+(a+2)=\frac{9a+18+a+2}{9}$$
=> $$x^2+y^2=\frac{10a+20}{9}$$ -----------(iii)
Similarly, subtracting equation (ii) from (i), => $$x^2-y^2=\frac{-8a-16}{9}$$ -------------(iv)
Dividing equation (iii) by (iv), we get :
=> $$\frac{x^2+y^2}{x^2-y^2}=(\frac{10a+20}{9})\div(\frac{-8a-16}{9})$$
= $$\frac{10a+20}{-8a-16}=\frac{10(a+2)}{-8(a+2)}$$
= $$\frac{-5}{4}$$
=> Ans - (D)
Create a FREE account and get: