If $$3 Â \sqrt[]{7}+\sqrt{343}=19.21$$, then find the value of $$\sqrt{252}+20\sqrt{7}$$
Given, $$3\sqrt{7}+\sqrt{343}=19.21$$
$$=$$> Â $$3\sqrt{7}+\sqrt{7^3}=19.21$$
$$=$$> Â $$3\sqrt{7}+7\sqrt{7}=19.21$$
$$=$$> Â $$10\sqrt{7}=19.21$$
$$=$$> Â $$\sqrt{7}=\frac{\ 19.21}{10}$$
$$\therefore\ \sqrt{252}+20\ \sqrt{7}=\sqrt{16\times7\ }+20\sqrt{7}=4\sqrt{7}+20\sqrt{7}=24\sqrt{7}=24\times\ \frac{\ 19.21}{10}=49.9$$
Create a FREE account and get: