Sign in
Please select an account to continue using cracku.in
↓ →
If $$x^2 = y + z , y^2 = z + x$$ and $$z^2 = x + y$$ then the value of $$\frac{1}{x + 1} + \frac{1}{y + 1} + \frac{1}{z + 1}$$ is
Given, $$x^2 = y + z$$
So, $$x^2+x=x+y+z$$
or, $$x\left(x+1\right)=x+y+z$$
or, $$\dfrac{1}{x+1}=\dfrac{x}{x+y+z}$$ --->(1)
Similarly, $$y^2 = x + z$$
Adding, $$y$$ to both sides,
$$y^2+y=y+x+z$$
or, $$y\left(y+1\right)=x+y+z$$
or, $$\dfrac{1}{y+1}=\dfrac{y}{x+y+z}$$ --->(2)
Similarly, $$z^2 = y + z$$
So, $$\dfrac{1}{z+1}=\dfrac{z}{x+y+z}$$ --->(3)
Now, adding (1), (2) and (3),
$$\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1$$
So, correct answer is option (B).
Create a FREE account and get:
CMAT Functions, Graphs and Statistics
CMAT Innovation and Entrepreneurship
CMAT Averages, Ratio and Proportion
CMAT Banking Computer Knowledge
CMAT Economic and Social Issues
CMAT Probability, Combinatorics
CMAT Logarithms, Surds and Indices
CMAT Indian National Static GK
CMAT Grammar and Sentence Correction
Educational materials for CAT preparation