Simplify : $$\left[\frac{1}{\log_{xy} (xyz)} + \frac{1}{\log_{yz} (xyz)} + \frac{1}{\log_{zx} (xyz)}\right]$$
Expression :Â $$\left[\frac{1}{\log_{xy} (xyz)} + \frac{1}{\log_{yz} (xyz)} + \frac{1}{\log_{zx} (xyz)}\right]$$
Using, $$\log_m(n)=\frac{1}{\log_n(m)}$$ and $$\log(mn)=\log(m)+\log(n)$$
= $$\log_{xyz}(xy)+\log_{xyz}(yz)+\log_{xyz}(zx)$$
=Â $$\log_{xyz}(xy\times yz\times zx)$$
= $$\log_{xyz}(xyz)^2$$
=Â $$2\log_{xyz}(xyz)$$Â Â Â [$$log_m(m)=1$$]
= $$2\times1=2$$
=> Ans - (D)
Create a FREE account and get: