Question 64

For some positive and distinct real numbers $$x, y$$ and z, if $$\frac{1}{\sqrt{y}+\sqrt{z}}$$ is the arithmetic mean of $$\frac{1}{\sqrt{x}+\sqrt{z}}$$ and $$\frac{1}{\sqrt{x}+\sqrt{y}}$$, then the relationship which will always hold true, is


Given that $$\dfrac{1}{\sqrt{y}+\sqrt{z}}$$ is the arithmetic mean of $$\dfrac{1}{\sqrt{x}+\sqrt{z}}$$ and $$\dfrac{1}{\sqrt{x}+\sqrt{y}}$$

=> $$\dfrac{2}{\sqrt{\ y}+\sqrt{\ z}}=\dfrac{1}{\sqrt{\ x}+\sqrt{\ z}}+\dfrac{1}{\sqrt{\ x}+\sqrt{\ y}}$$

=> $$2\left(\sqrt{\ x}+\sqrt{\ z}\right)\left(\sqrt{\ x}+\sqrt{\ y}\right)=\left(\sqrt{\ y}+\sqrt{\ z}\right)\left(\sqrt{\ x}+\sqrt{\ y}+\sqrt{\ x}+\sqrt{\ z}\right)$$

=> $$2\left(x+\sqrt{\ xy}+\sqrt{\ xz}+\sqrt{\ yz}\right)=2\sqrt{xy}+y+\sqrt{\ yz}+2\sqrt{\ xz}+\sqrt{\ yz}+z$$

=> $$2x=y+z$$

=> y, x, z are in A.P. as x is the arithmetic mean of y and z.

Video Solution


Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free


Boost your Prep!

Download App