Let $$\alpha(a)$$ and $$\beta(a)$$ be the roots of the equation $$\left(\sqrt[3]{1 + a} - 1\right)x^2 + \left(\sqrt{1 + a} - 1\right)x + \left(\sqrt[6]{1 + a} - 1\right) = 0$$ where a > -1. Then $$\lim_{a \rightarrow 0^+}\alpha(a)$$ and $$\lim_{a \rightarrow 0^+}\beta(a)$$ are
Create a FREE account and get: