Instructions

A supermarket has to place 12 items (coded A to L) in shelves numbered 1 to 16. Five of these items are types of biscuits, three are types of candies and the rest are types of savouries. Only one item can be kept in a shelf. Items are to be placed such that all items of same type are clustered together with no empty shelf between items of the same type and at least one empty shelf between two different types of items. At most two empty shelves can have consecutive numbers.

The following additional facts are known.

1. A and B are to be placed in consecutively numbered shelves in increasing order.

2. I and J are to be placed in consecutively numbered shelves both higher numbered than the shelves in which A and B are kept.

3. D, E and F are savouries and are to be placed in consecutively numbered shelves in increasing order after all the biscuits and candies.

4. K is to be placed in shelf number 16.

5. L and J are items of the same type, while H is an item of a different type.

6. C is a candy and is to be placed in a shelf preceded by two empty shelves.

7. L is to be placed in a shelf preceded by exactly one empty shelf.

Solution

The total number of biscuits = 5, the total number of candies =3 and the total number of savouries = 12-(3+5)=4

Representing the candies as C, biscuits as B and savories as S. K is to be placed in shelf number 16. D, E and F are savouries and are to be placed in consecutively numbered shelves in increasing order after all the biscuits and candies. Since there is no empty shelf between the items of same type, D,E,F and K are savouries and placed at 13,14,15 and 16 respectively. This can be tabulated as follows:

The shelf 12 will be empty.

It is given that items are to be placed such that all items of same type are clustered together.

From 1, A and B are to be placed in consecutively numbered shelves in increasing order.

From 6, C is a candy and is to be placed in a shelf preceded by two empty shelves and from 7, L is to be placed in a shelf preceded by exactly one empty shelf.

Hence C and L are items of different types. Since C is a candy, L will be a biscuit.

From 5, L and J are items of the same type, while H is an item of a different type.

Since I and J are clustered together, I, J and L are biscuits and H is a candy.

So C,H are candies and I,J,L are biscuits. It is given that A, B are place consecutively. Hence A and B are items of same types. So A, B should be biscuits because if they are candies, there will be 4 candies.

Hence, I,J,L,A,B are biscuits and C,H and G are candies.

Now there are two empty shelves before C and exactly one empty shelf before L, then the different cases can be tabulated as follows:

Case 1:

Case 2:

Option A and C are wrong as candies can come before biscuits and vice versa. B is not necessarily true as there can be one empty shelf too as shown in the table. Option D is true as there are at least 4 shelves between B and C. Hence D is the answer.

Create a FREE account and get:

- All Quant CAT complete Formulas and shortcuts PDF
**35+**CAT previous year papers with video solutions PDF- 5000+ Topic-wise Previous year CAT Solved Questions for Free

CAT Number Systems QuestionsCAT Functions, Graphs and Statistics QuestionsCAT Time, Distance and Work QuestionsCAT Simple Interest Compound Interest QuestionsCAT Profit And Loss Questions

CAT Truth Lie Concept QuestionsCAT Data Interpretation Basics QuestionsCAT Table with Missing values QuestionsCAT Routes And Networks QuestionsCAT Special Charts Questions