Question 24

Find the value of following expression $$\log\sin 40^\circ \log \sin 41^\circ --- \log \sin 99^\circ \log \sin 100^\circ$$

Solution

= $$\log\sin 40^\circ \log \sin 41^\circ..... \log \sin 90^\circ...... \log \sin 99^\circ \log \sin 100^\circ$$

We know that $$sin 90^\circ$$ = 1. And $$\log 1 = 0$$

= $$\log\sin 40^\circ \log \sin 41^\circ..... 0...... \log \sin 99^\circ \log \sin 100^\circ$$

Anything multiplied by 0 is 0.

Hence, option B is the answer.

Your Doubts


Ask a Doubt (know more)

Drop Your File Here!

** You can Drag and Drop an Image in the above textarea
add image

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

Related Formulas With Tests

cracku

Boost your Prep!

Download App