Find the value of following expression $$\log\sin 40^\circ \log \sin 41^\circ --- \log \sin 99^\circ \log \sin 100^\circ$$
= $$\log\sin 40^\circ \log \sin 41^\circ..... \log \sin 90^\circ...... \log \sin 99^\circ \log \sin 100^\circ$$
We know that $$sin 90^\circ$$ = 1. And $$\log 1 = 0$$
= $$\log\sin 40^\circ \log \sin 41^\circ..... 0...... \log \sin 99^\circ \log \sin 100^\circ$$
Anything multiplied by 0 is 0.
Hence, option B is the answer.
Create a FREE account and get: