Question 23

$$\dfrac{x}{y} = \dfrac{1}{3}$$, then $$\dfrac{x^{2} + y^{2}}{x^{2} - y^{2}}$$

Given that x/y = 1/3 => y = 3x.

Substituting this in the given fraction, we get:

$$\dfrac{\left(x^2+\left(3x\right)^2\right)}{\left(x^2-\left(3x\right)^2\right)}=\dfrac{\left(10x^2\right)}{\left(-8x^2\right)}=-\dfrac{10}{8}=-\dfrac{5}{4}$$

=> Option-A

Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

CUET Quant Questions | CUET Quantitative Ability

CUET DILR Questions | LRDI Questions For CUET

CUET Verbal Ability Questions | VARC Questions For CUET

Free CUET Quant Questions