Question 17

How many solutions $$\left(x, y, z\right)$$ of the equation $$x+y^{2}+z^{3}=50$$ exist, where x, y and z are positive integers?

Solution

$$x+y^2+z^3=50$$

Let z = 1, $$x+y^2=49$$ 

Pairs of (x,y) = (48,1),(45,2),(40,3),(33,4),(24,5),(13,6) = 6 solutions

Let z = 2, $$x+y^2=42$$

Pairs of (x,y) = (41,1),(38,2),(33,3),(26,4),(17,5),(6,6) = 6 solutions 

Let z = 3,$$x+y^2=23$$

Pairs of (x,y) = (22,1),(19,2),(14,3),(7,4) = 4 solutions 

Total possible solutions = 16 

$$\therefore\ $$ The required answer is C.

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 15 XAT previous papers with solutions PDF
  • XAT Trial Classes for FREE