Find the set S that denotes the set of all values of "$$\alpha$$" for which the roots of the equation $$(1 - \alpha)x^2 - 6 \alpha x + 8 \alpha = 0$$ is greater than 2.
$$f\left(x\right)=\left(1-\alpha\ \right)x^2-6\alpha x+8\alpha\ =0$$
Now roots are greater than 2 therefore,
$$-\frac{b}{2a}>2$$
$$f\left(2\right)>0$$
D>0
$$-\frac{b}{2a}>0$$
$$\frac{6\alpha}{2\left(1-\alpha\ \right)}>0$$
$$\frac{\alpha}{\alpha\ -1}<0$$
$$\alpha\ \in\ \left(0,1\right)$$
f(2)>0
$$\left(1-\alpha\ \right)4-12\alpha\ +8\alpha\ >0$$
$$4-8\alpha\ >0$$
$$\alpha\ <\frac{1}{2}$$
D>0
$$36\alpha\ ^2-32\alpha\ \left(1-\alpha\ \right)>0$$
$$68\alpha^2-32\alpha\ >0$$
$$\alpha\ \left(68\alpha\ -32\right)>0$$
$$\alpha\ \in\ \left(-\infty\ ,0\right)U\left(\frac{32}{68},\infty\ \right)$$
Taking the intersection of all we get $$\alpha\ \in\ \left(\frac{32}{68},\frac{1}{2}\right)$$
Create a FREE account and get: