Question 117

A doctor has decided to prescribe two new drugs D1and D2 to 200 heart patients such that 50 get drug D1, 50 get drug D2 and 100 get both. The 200 patients are chosen so that each had 80% chance of having a heart attack if given neither of the drugs. Drug D1 reduces the probability of a heart attack by 35 %, while drug D2 reduces the probability by 20%. The two drugs when taken together, work independently. If a patient, selected randomly from the chosen 200 patients, has a heart attack then the probability that the selected patient was given both the drug is:

Solution

Given that probability of getting a heart attack before any drug = 0.80

Drug D1 reduces the probability of a heart attack by 35 %. Therefore, the probability of a patient getting heart attack after he has taken D1 = (1-0.35)*0.80 = 0.52

Drug D2 reduces the probability of a heart attack by 20 %. Therefore, the probability of a patient getting heart attack after he has taken D2 = (1-0.20)*0.80 = 0.64

It is given that both D1 and D2 work independently. Therefore, the probability of a patient getting heart attack after he has taken both D1 and D2 = (1-0.35)*(1-0.20)*0.80 = 0.416

A total of 100 patients have taken both the drugs whereas only 50-50 patients took drug D1 and D2.

Hence, the probability that the selected patient was given both the drug is = $$\dfrac{0.416}{0.416+0.5*0.52+0.5*0.64}$$ = 0.417 $$\approx$$ 0.42

Therefore, we can say that option A is the correct answer.


Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App