Sign in
Please select an account to continue using cracku.in
↓ →
The inequality of p$$^2$$ + 5 < 5p + 14 can be satisfied if:
We have, p$$^2$$ + 5 < 5p + 14
=> p$$^2$$ - 5p - 9 < 0
=> p< $$\ \frac{\ 5\ +\ \sqrt{\ 61}}{2}$$ or p> $$\ \frac{\ 5\ -\ \sqrt{\ 61}}{2}$$
=> p<6.4 or p>-1.4
Hence, p ≤ 6, p > −1 will satisfy the inequalities
Click on the Email ☝️ to Watch the Video Solution
Create a FREE account and get: