Edit MetaData
9 years, 8 months ago
if x+y+z=6 , and x>0 , y>0 , z>0 then find the maximum value of x*y^3*z^2
9 years, 8 months ago
x + y/3 + y/3 + y/3 + z/2 + z/2 = 6
AM >= GM
(x + y/3 + y/3 + y/3 + z/2 + z/2)/6 >= $$(x*y/3*y/3*y/3*z/2*z/2)^{1/6}$$
=> 1 >= $$(x*y/3*y/3*y/3*z/2*z/2)^{1/6}$$
=> 1 >= $$x*y^3*z^2 / (3^3*2^2)$$
=> $$x*y^3*z^2$$ <= 27*4 = 108
Max value = 108