Question 96

A quadrilateral ABCD has side AD parallel to BC. If it is given that ∠ABC = 90°, BC = 5 cm and AD = 14 cm. It is also given that the perimeter of this quadrilateral is 46 cm, then its area, in sq. cm, is

Screenshot 2025-01-06 10

Let the value of AB be x.

Using the Pythagoras theorem, we get,

$$CD^2\ =\ x^2\ +\ 9^2$$

$$CD\ =\ \sqrt{x^2\ +\ 9^2\ }$$

The perimeter is given as,

x + 5 + $$\sqrt{x^2\ +\ 9^2\ }$$ + 14 = 46

$$\sqrt{x^2\ +\ 9^2\ }\ =\ 46\ -\ 19\ -\ x$$

$$\sqrt{x^2\ +\ 81\ }\ =\ 27\ -\ x$$

Squaring on both sides, we get,

$$x^2\ +\ 81\ \ =\ 729\ +\ x^2\ -\ 54x$$

$$54x=\ 729\ -\ 81\ =\ 648$$

$$x\ =\ 12$$ cm

$$CD\ =\ \sqrt{\ 144\ +\ 81}\ =\ 15$$ cm

Area of the quadrilateral = area if rectangle  +  area of triangle

area of rectangle = 12 * 5 = 60 sq. cm

area if triangle  =  $$\dfrac{1}{2}\ \times\ 9\ \times\ 12$$  = 54 sq. cm

Area of quadrilateral = 60 + 54 = 114 sq. cm

The correct answer is option B.

SRCC Quant Questions | SRCC Quantitative Ability

SRCC DILR Questions | LRDI Questions For SRCC

SRCC Verbal Ability Questions | VARC Questions For SRCC

Free SRCC Quant Questions