Question 88

If $$a^{2}sec^{2} x-b^{2} tan^{2} x$$=$$c^{2}$$ then the value of $$sec^{2} x+tan^{2} x $$ is equal to ($$ b^{2} \neq  a^{2}$$)

Solution

Given that $$a^{2}sec^{2} x-b^{2} tan^{2} x$$=$$c^{2}$$

=> $$a^{2}(1+tan^{2} x)-b^{2} tan^{2} x$$=$$c^{2}$$

=> $$a^2+tan^{2}x(a^2-b^2)=c^{2}$$

=> $$tan^{2}x=\frac{c^2-a^2}{a^2-b^2}$$

Therefore, 

$$sec^{2} x+tan^{2} x $$ 

= $$1+2tan^{2}x$$

=$$1+2(\frac{c^2-a^2}{a^2-b^2})$$

=$$\frac{b^{2}+a^{2}-2C^{2}}{b^{2}-a^{2}}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App