In a certain sequence the term $$x_{n}$$ is given by formula $$x_{n}=5x_{n-1} - \frac{3}{4}x_{n-2}$$ for $$n\geq2$$. What is the value of $$x_{3}$$, if $$x_{0}=4$$ and $$x_{1}=2?$$
Given that $$x_{n}=5x_{n-1} - \frac{3}{4}x_{n-2}$$
$$\therefore$$ $$x_{2}=5x_{1} - \frac{3}{4}x_{0}$$
$$x_{2}=5*2 - \frac{3}{4}*4$$ = $$10-3$$ = 7
Similarly $$x_{3}=5x_{2} - \frac{3}{4}x_{1}$$
$$x_{3}=5*7 - \frac{3}{4}*2$$ = 35 - $$\frac{3}{2}$$ = $$\frac{67}{2}$$
Create a FREE account and get: